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Averages in restricted random walks 

C Domb 
Wheatsone Physics Laboratory, King's College, Strand, London WC2R 2LS, UK 

Received 25 June 1980 

Abstract. In configurational studies of polymer chains one is sometimes concerned with 
averages in the presence of restrictions, e.g. that the end-to-end distance of the chain is R. 
The standard method of calculating such averages is to assume that the separation of all 
pairs of elements is Gaussian. An alternative method is developed here which uses 
generating functions and avoids the Gaussian assumption. The results are equivalent 
asymptotically to those with the Gaussian assumption, but correction terms can be 
calculated. 

1. Introduction 

Averages in random walks on lattices can be calculated very simply by means of 
generating functions (GF's). But in polymer theory we are often interested in averages 
when there are restrictions present, e.g. that the walk is a closed loop, or that the 
end-to-end length is fixed and equal to L. 

Such problems have usually been tackled using a Gaussian assumption for the 
distance apart of any pair of points of the walk (see, e.g., Volkenstein 1963). But the 
method of generating functions can be adapted to deal with these problems, and does 
not make any basic assumption; it yields a closed-form answer which can be evaluated 
to any degree of accuracy required for any given lattice and for any length of walk. 

2. One-dimensional example 

We start with a one-dimensional example, the mean-square length ( I : )  of the first n1 
steps of a random walk knowing that the total length after n steps is L. 

Define c (n l ,  ll; n 2 ,  1 2 )  as the number of walks which are at 11 after n l  steps and at l2  
after n 2  steps. Use the variable x1 to characterise the first n l  steps of the walk, and xi to 
characterise the remaining n2 steps (nl + a2 = n) .  Then from standard theory of random 
walks 

where 4 ( x )  is the generating function (GF) for the walk 

For the restricted walk we need to keep a check on the total length, and we therefore 
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introduce an additional variable x to correspond to 1. We then write 

q(x, XI, x2) = 1 c(nl ,11;  n2, I~)x:~x:~x' 
11,12./ 

= 4 (xx1)"q (XX2)"'. (3) 

The mean-square length required is 

Following the usual procedure with GF'S it is easy to see that the numerator in (4) is 
obtained from the coefficient of xL in 

evaluated at x1 = x2 = 1. We readily find from (3) that (5) is given by 

n14(XXl)n1+nl(nl - l ~ t 3 [ x x l - ( X X 1 ~ - ' 1 } 2 ~ ( X X l ) n ~ - 2 ~ ( X X 2 ) ~ ~  (6) 

and after putting xl, x2 = 1 and manipulating the algebra slightly, we require the 
coefficient of xL in 

n14(x)" +n1(n1- 1)(4(x)" -4(x)"-2). (7 )  

If c ( n  ; L )  is the total number of walks at L after n steps, which is the coefficient of xL in 
4(x)", then 

The general form of (8) consisting of a contribution equal to n l  and a contribution of 
order n: shows clearly how the transition takes place from a random chain to a stiff 
chain. When L = 0 (8) has a particularly simple form since 

1 n !  
c ( n  ; 0 )  = - - 

2" (in)!' ( n  even); 

we find that 

For general L we have instead 

1 n !  
c ( n ; L ) = -  

2" [3(n - L ) ] ! [ $ ( n  +L)]! '  

and hence 

( n  + L ) ( n  - L )  
n ( n  - 1) (1 : )  = n1 + nl(nl - 1) (1 - 

(9) 



Averages in restricted random walks 22 1 

3. Higher dimensions 

There is no difficulty in generalising the method to higher dimensions, but we must 
devise a suitable notation to take account of vector displacements. Instead of (3) we 
shall now write 

where r? is a shorthand notation for x b y  ;"lz and so on. We now have 

W r ,  r l ,  r2) = 4 ( r r 1 ) " ~ 4 ( r r 2 ) " ~  

4 ( r )  = 4(x ,  Y, 2) 

(14) 

for a walk with GF 

(15) 

where 4 ( r r l )  is used as a shorthand notation for 4(xx1, y y l ,  zzl). For example, for the 
body-centred cubic lattice 

4( r )=$(x+x- ' ) (y  +y- l ) (z+z- ' )  (16) 

4 ( r r l )  =$(xxl+x-lx;l)(yyl+y-ly; ' )(zzl+z-lz;l) .  

The generalisation of (5) is given by (Domb and Joyce 1972) 

evaluated at rl = r2 = 1, and we need the coefficient of rL.  Here E is an appropriate 
constant equal to 1 , ~  and 4 for the simple cubic, body-centred cubic and face-centred 
cubic lattices respectively. 

The body-centred cubic lattice is particularly simple since its GF is the product of 
three one-dimensional GF'S and all the c(n,  I )  can be given in closed form. In fact, we 
find that formula (6) generalises in a straightforward manner for this lattice; instead of 
( 7 )  we now have 

1 

It is easy to see that formula (10) remains unchanged since each of the terms in the curly 
bracket of (18) makes the same contribution and the sum is divided by 3. Instead of (12) 
we now have 

The method can clearly be generalised to any lattice, but it is easier to work with the BCC 

because the c ( n ;  L )  can be expressed explicitly. 
Formula (19) is equivalent asymptotically to Volkenstein's formula (4.52), which in 

our notation reads 
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where R is the distance between the end points of the chain; for the BCC lattice 

4. Radius of gyration 

The method outlined above provides a simple means of calculating exactly the radius of 
gyration of a random chain with a given end-to-end length. The radius of gyration of a 
chain of n bonds connecting (n + 1) elements of equal mass is given by  (Flory 1953, 
Domb and Hioe 1969) 

where (R;),, is the mean square distance between points i and j of the walk averaged 
over all configurations. 

From our previous discussion the generating function analogous to (1) which we 
need to use for evaluating (22) is 

4 ( X l ) ” * 4  ( X 2 ) n 2 4  ( X 3 P  (23) 

where n l ,  n2,  n3 take all positive integral values from zero to n. We will need to 
differentiate with respect to x2 or obtain (R;),,, and sum for all n l ,  n2, n3 which satisfy 
n 1 + n2 + n3 = n. This is conveniently achieved by introducing a dummy variable t, and 
taking the coefficient of t n  in 

Let us first evaluate (22) for a purely random one-dimensional chain. We find that 

and this vanishes when x2 = 1. The only non-zero term in (x~(d/ax2))’0 is 

1 ;t(x2+x;1) 1 
1-t#(x1) (1-t4(x2))2 1-f4(x3)’ 

putting X I =  x2 = x3 = 1 we require the coefficient of t” in t (1-  t ) -4 which is 

i n  ( n  + l ) ( n  + 2). (27) 

Hence from (22) for this random chain 

2 1 n ( n + 2 )  
(SA=-- 6 ( n + 1 )  ’ 

and it is easy to show that this result holds for any random chain. 
For a restricted chain (24) is replaced by 

1 1 1 
O( t ;  x, XI, X2, x3) = -- 

1 - t # ( X X 1 )  I-t$J(xxz) l - Q b ( X X 3 ) ’  
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Forming, as before, ( X Z  8/8x2)'@ and putting xl, x2, x3 = 1,  we obtain 
-1 2 2 W x  - x  11 

The coefficient of t" in (30) is 

4n(n + l ) (n  +2)4 (x ) "  +&(n - l ) n ( n  + l ) (n  +2)[t(x-'-X)]24(X)n-2. (31) 
Taking the coefficient of x L  and dividing by l / ( n  + 1)' we finally derive the simple exact 
result 

c(n ,  L )  
1 n ( n + 2 )  1 ( n - l ) n ( n + 2 )  (p) " 6 ( n + 1 )  1 2  ( n + l )  
- ---+- - 

Again we have the combination of a random chain term with a stiff chain term. 
For a simple one-dimensional chain (32) reduces to 

6 ( n + 1 )  12 ( n + 1 )  ( l - ( n + L ) ( n - L ) ) ,  n ( n  .- 1) ' (33) 
1 n ( n + 2 )  1 ( n - l ) n ( n + 2 )  +- -~ 

it is not difficult to derive as before the three-dimensional generalisation for the BCC 

lattice 

1 n ( n + 2 )  1 ( n - l ) n ( n + 2 )  1 
6 ( n + 1 )  12 ( a + ] . )  n ( n  - 1) 

+- -~ (34) 

5. More complex restrictions 

The averages discussed so far arise in perturbation calculations for the radius of 
gyration of a polymer chain using the Domb-Joyce model (details will be given in a 
forthcoming paper by Barrett and Doinb). Higher-order terms involve averages with 
more complex restrictions. For example, we may be interested in the mean-square 
length of n2 steps in the double loop configuration in figure 1. We would break up into 
four pieces n l ,  n2, n 3 ,  n4 as indicated in the diagram, and use one dummy variable, x, to 

Figure 1. Mean square spacing in a double loop configuration. The average is taken over 
points connected by the double line. 
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take account of the first return to the origin, and a second dummy variable X I  to take 
account of the second return to the origin. The appropriate GF is then 

4 (xx 1 )  "l4 (xx2)  "V (XX3)"'4 (x 'x4 )  f14 (35) 
and after differentiation with respect to x 2  we would seek the coefficient independent of 

For the configuration in figure 2 which arises in the second term of the perturbation 
x, X I .  

series we break up into nl ,  n 2 , 1 1 3 ,  n 4 ,  n5 as indicated; the appropriate GF is 

~ ( x x l ) " ~ ~ ( X X ~ ) " ~ ~ ( X X ~ ) " ~ ~ ( x ' X 4 ) " " ~ ( X ~ ' X ~ ) " '  (36) 
and we would seek the coefficient of X ~ - X ' ~ X ' ' ~ .  

"7 

"5 

Figure 2. Mean square average arising in the perturbation series for the radius of gyration of 
a polymer chain. 

Once the basic idea has been grasped it is easy to calculate any length average ( I ? )  
and it always consists of two parts, a term in n, and a term in n,(n,  - 1). 

A different type of problem arises for the configuration in figure 3, the mean-square 
distance between points on two random walks which start and end together. For this we 
introduce the GF 

(37) 4 ( X X l ) " 1 4  (XX2)"24 (X'X3)"34 (X'X4)"". 

Our aim is to calculate 

( ( I 3  - 11)2)  = ( I :  - 21311 + 1:)  

and this will be obtained from the operator 

The first two terms are dealt with as before. 

Figure 3. Mean square distance between points on two random walks which start and end 
together. 
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The third term gives (putting x1 = x2 = x3 = x4 = 1 as usual) the coefficient of x Lx'L in 

2nln3[i(x - x-')][f(x' - x ' - ~ ) I ~ ( x ) " - ~ ~  (x"''-l 

( n l  + 112 = n, n3 + n4 = n') (40) 
which gives 

(41) 
1 C n - 1 ( L  - l)-cn-l(L + 1) CnL1(L - 1) - C,,-l(L + 1) 

C" (L) C ' G )  
~ n l n 3  

This reduces quite simply to 

2~ 'n ln3/nn ' .  (42) 

6. Higher moments and complete probability distributions 

There is no difficulty in extending the method to higher-order moments (/I), etc; the 
same GF'S are used and higher derivatives calculated. A more general problem is to find 
the asymptotic form of the distribution; one would expect this to be Gaussian, but it 
would be nice to have a technique to determine the deviations from Gaussian. 

In fact the GF method lends itself naturally to a contour integral and saddle-point 
treatment (Domb 1954). We illustrate again by the one-dimensional example of § 2 in 
which we seek the complete probability distribution p(nl ,  l l ;  n, L )  of being at I1 after n l  
steps. This is given by the coefficient of xbx' in 4(xxl)"lr$(x)"-"l which can be written 
as a contour integral 

around unit circles in the xl ,  x planes. Putting 
transformed into 

I r 2 ~  r 2 v  

(43) 

x1 = eiel, x = eie, integral (43) is 

(44) de  cos(@ + 01)"1 cos @"-"I e -i(1,e1+Le) & J, J 0 

To evaluate this integral we replace COS' 4 by 

exp[(n(ln c o s 4 ) 1 = e ~ p ( - ~ n 4 ~ ) ( 1 - & n 4 ~ + .  . .). (45) 

The Gaussian approximation corresponds to ignoring the terms in the final bracket in 
(45). We easily find that to this approximation the integral (44) reduces to 

1 2 1 
J2 rrn 1 J 2 m 2  
- exp(-/l/nl) = exp[-(L - ~) ' /n2] .  

To obtain p(n1, / l ;  n, L )  we must divide by c(n, L )  and we find 
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The corresponding three-dimensional distribution can be evaluated similarly, and is 
given by equation (4.49) in Volkenstein (1963). But if we wished there would be no 
difficulty (except labour) in evaluating correction terms, or using a better approximation 
involving the method of steepest descents (Domb and Offenbacher 1978). 
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